
Benchmarking results when compared against a vanilla HTTP server
 Experimental Results: Server runs on own machine using docker and client run on different machine but in the same network (LAN: both

machines connected in same mobile hotspot).

Implementation of various cryptographic algorithms
for the purpose of use in passive RFID systems

Basic Block Diagram

Software and Hardware Requirement 

 Board - Rpi

 Communication-XMPP

 Authentication – PRESENT (as per ISO/IEC 29192) & PKI Primitive

 Implementation - Edge/Gateway/Server

Problem Statement
Have a PoC ready to go with standard lightweight protocol support and

deploy a use case.

Use Case:
A prototype for the client-server authentication using the

authentication library.

Team Lead: Dr. Dhiman Saha, Prof. Brejesh Lall

Team Member: Dr. Pabitra Pal, Ahaan Dabholkar, Satanu Maity and Manas Wadhwa

Client Server Communication

Deliverables:

An authentication library built into the networking stack of an IoT

device (in our case an RPi).
Detailed report on the benchmarking results of the library in

comparison to a vanilla HTTP server using RSA-AES authentication

when a bunch of active clients are connected to the server and

subscribed to a particular service.

Introduction:
With the advent of 5G networks capable of handling huge bandwidths and massive amounts of data transferred over the air, it is expected that a

large number of IoT devices would join the already dense mesh of interconnected devices. These devices would be very constrained in their

computational capabilities and power consumption rates and their primary role would be to transmit collected data to an authorized endpoint.
As such the security requirements of such devices are very different from the ones required by generic computing systems and would need to

be tailored to fit their limited abilities.

Problem details:
Here we propose an initial prototype of an authentication library built

into the networking stack of an IoT device (in this case an ESP32).
While the traditional protocol, for communication, has always been

HTTP, we aim to mitigate the parsing and header size overheads of

this protocol by instead using the much lighter and faster XMPP pub-
sub protocol. For the security layer built on top of this stack, traditional

RSA-AES would be too considered too “heavy” in terms of

computational and memory requirements. We propose replacing it

with a lightweight alternative such as RSA-PRESENT which would

lead to a smaller codebase and a less memory-intensive mode of

operation while providing reasonable guarantees of security. For

devices (comms modules) with highly constrained downlink speeds,
this would lead to smaller size communications and hence higher

throughput.

Why people choose our protocol

 Lighter and faster protocol for communication with a huge number

of IoT devices.
Light-weight in terms of computational and memory requirements:
Easy installation of the library in the communication module:


